Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Usnic acid ameliorates bleomycin-induced pulmonary fibrosis in mice via inhibition of inflammatory responses and oxidative stress

Xiao-Qi Huang1,2, Gao-Xiang Ai1, Xing-Han Zheng1, Hui-Jun Liao3

1Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006; 2Guangzhou University Chinese Medicine, Dongguan Mathematical Engineering Academy of Chinese Medicine, Dongguan 523808; 3Department of Clinical Pharmacy and Pharmaceutical Services, Shenzhen Sixth People's Hospital (Nanshan Hospital), Shenzhen, PR China.

For correspondence:-  Hui-Jun Liao   Email: lhj2019000@163.com

Accepted: 20 November 2019        Published: 31 December 2019

Citation: Huang X, Ai G, Zheng X, Liao H. Usnic acid ameliorates bleomycin-induced pulmonary fibrosis in mice via inhibition of inflammatory responses and oxidative stress. Trop J Pharm Res 2019; 18(12):2563-2569 doi: 10.4314/tjpr.v18i12.15

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To Investigate the effect of usnic acid (UA) on bleomycin (BLM)-induced pulmonary fibrosis in mice, and the underlying mechanism.
Methods: Male Kunming mice with bleomycin-induced pulmonary fibrosis (PF) were exposed to different concentrations of usnic acid. Lung coefficient and histopathological changes were determined, while MDA, superoxide dismutase (SOD) activity, and expression levels of hydroxyproline, tumor necrosis factor-α, interleukins-1β & 6, and transforming growth factor-β1 were assayed in lung homogenates.
Results: UA significantly mitigated lung coefficient and histopathological changes in mice. Compared to the bleomycin group, MDA level was significantly reduced while the content of SOD markedly increased after UA pretreatment (p < 0.05). Moreover, UA significantly reduced the expression levels of all the parameters, relative to bleomycin group (p < 0.05).
Conclusion: These results indicate that UA protects mice against bleomycin-induced PF via a mechanism associated with attenuation of pro-oxidant stress and inflammation. Therefore, UA has therapeutic potential for the management of pulmonary fibrosis.

Keywords: Usnic acid, Bleomycin, Pulmonary fibrosis, Inflammation, Oxidative stress

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates